Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 262, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658987

RESUMO

BACKGROUND: Femoral neck fractures (FNFs) in young adults are usually caused by high-energy trauma, and their treatment remains a challenging issue for orthopedic surgeons. The quality of reduction is considered an important factor in improving the poor prognosis of patients with FNFs. In recent years, positive buttress closed reduction technique has received widespread attention in the treatment of FNFs. This comprehensive literature review is designed to encapsulate the impacts of both non-anatomic and anatomic reduction on the biomechanical stability, clinical outcomes, and postoperative complications in the management of FNFs, conjecture the efficacy of positively braced reduction techniques and provide a thorough summarization of the clinical outcomes. METHODS: In this literature review, we have examined all clinical and biomechanical studies related to the treatment of FNFs using non-anatomical reduction or positive and negative buttress reduction. PubMed, Web of Science, Google Scholar and Embase Library databases were searched systematically for studies published before September 1, 2023. Published literature on fracture reduction techniques for treating FNFs was reviewed. In addition, we evaluated the included literature using the MINORs tool. RESULTS: Although the "arch bridge" structure formed by the positive buttress reduction technique improved the support to the cortical bone and provided a more stable biomechanical structure, no significant differences were noted in the clinical efficacy and incidence of postoperative complications between the positive buttress reduction and anatomical reduction. CONCLUSION: Positive buttress reduction is an effective treatment method for young patients with FNFs. When facing difficult-to-reduce FNF, positive buttress reduction should be considered first, followed by anatomical reduction. However, negative buttress reduction should be avoided.


Assuntos
Fraturas do Colo Femoral , Humanos , Fraturas do Colo Femoral/cirurgia , Resultado do Tratamento , Fenômenos Biomecânicos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Redução Fechada/métodos , Fixação Interna de Fraturas/métodos , Adulto , Masculino
2.
Comput Biol Med ; 165: 107421, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672925

RESUMO

MOTIVATION: Accumulating clinical evidence shows that circular RNA (circRNA) plays an important regulatory role in the occurrence and development of human diseases, which is expected to provide a new perspective for the diagnosis and treatment of related diseases. Using computational methods can provide high probability preselection for wet experiments to save resources. However, due to the lack of neighborhood structure in sparse biological networks, the model based on network embedding and graph embedding is difficult to achieve ideal results. RESULTS: In this paper, we propose BioDGW-CMI, which combines biological text mining and wavelet diffusion-based sparse network structure embedding to predict circRNA-miRNA interaction (CMI). In detail, BioDGW-CMI first uses the Bidirectional Encoder Representations from Transformers (BERT) for biological text mining to mine hidden features in RNA sequences, then constructs a CMI network, obtains the topological structure embedding of nodes in the network through heat wavelet diffusion patterns. Next, the Denoising autoencoder organically combines the structural features and Gaussian kernel similarity, finally, the feature is sent to lightGBM for training and prediction. BioDGW-CMI achieves the highest prediction performance in all three datasets in the field of CMI prediction. In the case study, all the 8 pairs of CMI based on circ-ITCH were successfully predicted. AVAILABILITY: The data and source code can be found at https://github.com/1axin/BioDGW-CMI-model.

3.
J Transl Med ; 21(1): 668, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759285

RESUMO

Osteoporosis is a systemic bone disease characterized by low bone mass, microarchitectural deterioration, increased bone fragility, and fracture susceptibility. It commonly occurs in older people, especially postmenopausal women. As global ageing increases, osteoporosis has become a global burden. There are a number of medications available for the treatment of osteoporosis, categorized as anabolic and anti-resorptive. Unfortunately, there is no drugs which have dual influence on bone, while all drugs have limitations and adverse events. Some serious adverse events include jaw osteonecrosis and atypical femoral fracture. Recently, a novel medication has appeared that challenges this pattern. Romosozumab is a novel drug monoclonal antibody to sclerostin encoded by the SOST gene. It has been used in Japan since 2019 and has achieved promising results in treating osteoporosis. However, it is also accompanied by some controversy. While it promotes rapid bone growth, it may cause serious adverse events such as cardiovascular diseases. There has been scepticism about the drug since its inception. Therefore, the present review comprehensively covered romosozumab from its inception to its clinical application, from animal studies to human studies, and from safety to cost. We hope to provide a better understanding of romosozumab for its clinical application.


Assuntos
Osteoporose , Animais , Feminino , Humanos , Idoso , Osteoporose/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Envelhecimento , Desenvolvimento Ósseo
4.
iScience ; 26(8): 107478, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37583550

RESUMO

Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.

5.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971393

RESUMO

MOTIVATION: A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. RESULTS: In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. AVAILABILITY: The data and source code can be found at https://github.com/1axin/JSNDCMI.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , RNA Circular , Redes Neurais de Computação , Software , Biologia Computacional/métodos
6.
Front Genet ; 13: 958096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051691

RESUMO

Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA-miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA-miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision-recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA-miRNA interaction and can act as a reliable candidate for related RNA biological experiments.

7.
Biology (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36138829

RESUMO

Computational prediction of miRNAs, diseases, and genes associated with circRNAs has important implications for circRNA research, as well as provides a reference for wet experiments to save costs and time. In this study, SGCNCMI, a computational model combining multimodal information and graph convolutional neural networks, combines node similarity to form node information and then predicts associated nodes using GCN with a distributive contribution mechanism. The model can be used not only to predict the molecular level of circRNA-miRNA interactions but also to predict circRNA-cancer and circRNA-gene associations. The AUCs of circRNA-miRNA, circRNA-disease, and circRNA-gene associations in the five-fold cross-validation experiment of SGCNCMI is 89.42%, 84.18%, and 82.44%, respectively. SGCNCMI is one of the few models in this field and achieved the best results. In addition, in our case study, six of the top ten relationship pairs with the highest prediction scores were verified in PubMed.

8.
Front Bioeng Biotechnol ; 10: 807522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387292

RESUMO

The prediction of protein-protein interactions (PPIs) in plants is vital for probing the cell function. Although multiple high-throughput approaches in the biological domain have been developed to identify PPIs, with the increasing complexity of PPI network, these methods fall into laborious and time-consuming situations. Thus, it is essential to develop an effective and feasible computational method for the prediction of PPIs in plants. In this study, we present a network embedding-based method, called DWPPI, for predicting the interactions between different plant proteins based on multi-source information and combined with deep neural networks (DNN). The DWPPI model fuses the protein natural language sequence information (attribute information) and protein behavior information to represent plant proteins as feature vectors and finally sends these features to a deep learning-based classifier for prediction. To validate the prediction performance of DWPPI, we performed it on three model plant datasets: Arabidopsis thaliana (A. thaliana), mazie (Zea mays), and rice (Oryza sativa). The experimental results with the fivefold cross-validation technique demonstrated that DWPPI obtains great performance with the AUC (area under ROC curves) values of 0.9548, 0.9867, and 0.9213, respectively. To further verify the predictive capacity of DWPPI, we compared it with some different state-of-the-art machine learning classifiers. Moreover, case studies were performed with the AC149810.2_FGP003 protein. As a result, 14 of the top 20 PPI pairs identified by DWPPI with the highest scores were confirmed by the literature. These excellent results suggest that the DWPPI model can act as a promising tool for related plant molecular biology.

9.
Front Biosci (Landmark Ed) ; 26(7): 222-234, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34340269

RESUMO

Introduction: The prediction of interacting drug-target pairs plays an essential role in the field of drug repurposing, and drug discovery. Although biotechnology and chemical technology have made extraordinary progress, the process of dose-response experiments and clinical trials is still extremely complex, laborious, and costly. As a result, a robust computer-aided model is of an urgent need to predict drug-target interactions (DTIs). Methods: In this paper, we report a novel computational approach combining fuzzy local ternary pattern (FLTP), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) to identify DTIs. More specially, the target primary sequence is first numerically characterized into PSSM which records the biological evolution information. Afterward, the FLTP method is applied in extracting the highly representative descriptors of PSSM, and the combinations of FLTP descriptors and drug molecular fingerprints are regarded as the complete features of drug-target pairs. Results: Finally, the entire features are fed into rotation forests for inferring potential DTIs. The experiments of 5-fold cross-validation (CV) achieve mean accuracies of 89.08%, 86.14%, 82.41%, and 78.40% on Enzyme, Ion Channel, GPCRs, and Nuclear Receptor datasets. Discussion: For further validating the model performance, we performed experiments with the state-of-art support vector machine (SVM) and light gradient boosting machine (LGBM). The experimental results indicate the superiorities of the proposed model in effectively and reliably detect potential DTIs. There is an anticipation that the proposed model can establish a feasible and convenient tool to identify high-throughput identification of DTIs.


Assuntos
Preparações Farmacêuticas , Máquina de Vetores de Suporte , Biologia Computacional , Bases de Dados de Proteínas , Interações Medicamentosas , Matrizes de Pontuação de Posição Específica
10.
Sci Rep ; 11(1): 16910, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413375

RESUMO

Various biochemical functions of organisms are performed by protein-protein interactions (PPIs). Therefore, recognition of protein-protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.


Assuntos
Evolução Molecular , Mapeamento de Interação de Proteínas , Bases de Dados de Proteínas , Humanos , Curva ROC , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Máquina de Vetores de Suporte
11.
Biomed Res Int ; 2021: 9933873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987446

RESUMO

Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition. Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be expensive, laborious, and intricate. Therefore, a convenient and reliable computer-aided method has become the focus on inferring drug-target interactions (DTIs). In this research, we propose a novel computational model integrating a pyramid histogram of oriented gradients (PHOG), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) classifier for identifying DTIs. Specifically, protein primary sequences are first converted into PSSMs to describe the potential biological evolution information. After that, PHOG is employed to mine the highly representative features of PSSM from multiple pyramid levels, and the complete describers of drug-target pairs are generated by combining the molecular substructure fingerprints and PHOG features. Finally, we feed the complete describers into the RF classifier for effective prediction. The experiments of 5-fold Cross-Validations (CV) yield mean accuracies of 88.96%, 86.37%, 82.88%, and 76.92% on four golden standard data sets (enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively). Moreover, the paper also conducts the state-of-art light gradient boosting machine (LGBM) and support vector machine (SVM) to further verify the performance of the proposed model. The experimental outcomes substantiate that the established model is feasible and reliable to predict DTIs. There is an excellent prospect that our model is capable of predicting DTIs as an efficient tool on a large scale.


Assuntos
Sequência de Aminoácidos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Interações Medicamentosas , Aprendizado de Máquina , Bases de Dados de Proteínas , Matrizes de Pontuação de Posição Específica , Máquina de Vetores de Suporte
12.
Front Genet ; 10: 758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555320

RESUMO

The interaction of miRNA and lncRNA is known to be important for gene regulations. However, the number of known lncRNA-miRNA interactions is still very limited and there are limited computational tools available for predicting new ones. Considering that lncRNAs and miRNAs share internal patterns in the partnership between each other, the underlying lncRNA-miRNA interactions could be predicted by utilizing the known ones, which could be considered as a semi-supervised learning problem. It is shown that the attributes of lncRNA and miRNA have a close relationship with the interaction between each other. Effective use of side information could be helpful for improving the performance especially when the training samples are limited. In view of this, we proposed an end-to-end prediction model called GCLMI (Graph Convolution for novel lncRNA-miRNA Interactions) by combining the techniques of graph convolution and auto-encoder. Without any preprocessing process on the feature information, our method can incorporate raw data of node attributes with the topology of the interaction network. Based on a real dataset collected from a public database, the results of experiments conducted on k-fold cross validations illustrate the robustness and effectiveness of the prediction performance of the proposed prediction model. We prove the graph convolution layer as designed in the proposed model able to effectively integrate the input data by filtering the graph with node features. The proposed model is anticipated to yield highly potential lncRNA-miRNA interactions in the scenario that different types of numerical features describing lncRNA or miRNA are provided by users, serving as a useful computational tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...